Journal of Organometallic Chemistry, 378 (1989) 73-79 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20182

Chemie Polyfunktioneller Moleküle

CV *. Chrom-, Molybdän- und Wolframtricarbonyl-Komplexe des Bis(2-diphenylphosphinoethyl)amins

Jochen Ellermann *, Matthias Moll und Norbert Will

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 1, D-8520 Erlangen (B.R.D.) (Eingegangen den 12. Juni 1989)

Abstract

 $fac-M(CO)_3(C_7H_8)$ (M = Cr, Mo, W; C_7H_8 = cycloheptatriene) reacts with [(Ph₂PCH₂CH₂)₂NH₂]Cl (1) in the presence of n-C₄H₉Li to give the complexes $fac-(OC)_3M(PPh_2CH_2CH_2)_2NH$ (3a-c; M = Cr, Mo, W) and $mer-(OC)_3Cr(PPh_2-CH_2CH_2)_2NH$ (3a'). The compounds are characterized by their infrared, Raman, ¹H NMR, ³¹P{¹H} NMR, ⁹⁵Mo NMR and mass spectra.

Zusammenfassung

 $fac-M(CO)_3(C_7H_8)$ (M = Cr, Mo, W; C_7H_8 = Cycloheptatrien) reagiert mit [(Ph₂PCH₂CH₂)₂NH₂]Cl (1) in Gegenwart von n-C₄H₉Li zu den Komplexen $fac-(OC)_3M(PPh_2CH_2CH_2)_2NH$ (3a-c, M = Cr, Mo, W) und mer-(OC)₃Cr(PPh₂-CH₂CH₂)₂NH (3a'). Die Verbindungen wurden an Hand ihrer IR-, Raman-, ¹H-NMR-, ³¹P{¹H}-NMR-, ⁹⁵Mo-NMR- und Massen-Spektren charakterisiert.

Einleitung

Obwohl Bis(2-diphenylphosphinoethyl)amin, $[(C_6H_5)_2PCH_2CH_2]_2NH$ (1), bereits 1968 von Sacconi et al. [2] synthetisiert wurde, sind seine komplexchemischen Eigenschaften bislang nur wenig untersucht worden. Zwar wurden einige Nickel(II)- und Cobalt(II)-Verbindungen mit diesen Liganden bekannt [2,3], jedoch sind bisher keine Chrom-, Molybdän- und Wolframtricarbonyl-Derivate von 1 beschrieben worden. Im Zuge unserer Arbeiten über die Synthese des Diphenylphosphin-substituierten Cyclophosphamids (2) [4] waren jedoch solche Metalltri-

^{*} CIV. Mitteilung siehe Ref. 1.

carbonylsysteme mit dem Liganden 1 als Ausgangsmaterialien von großem Interesse [5].

Präparative Ergebnisse

Gibt man an Stelle von 1 zum besser handhabbaren, kristallinen Hydrochlorid $[(Ph_2PCH_2CH_2)_2NH_2]Cl$ (1a) [6], gelöst in THF, ein Äquivalent n-Butyllithium, so bildet sich 1 zurück (Gl. 1). Dazu wird eine äquimolare Lösung von fac- $M(CO)_3(C_7H_8)$ (M = Cr, Mo, W; C_7H_8 = Cycloheptatrien) in THF zugetropft. Anschliessend erwärmt man und fällt schliesslich mit Methanol. Es entstehen gelbe, nadelförmige Kristalle, die anhand der IR-aktiven $\nu(CO)$ -Schwingungsbanden als fac- $(OC)_3M(PPh_2CH_2CH_2)_2NH$ (3a-c) identifiziert werden (Gl. 2). Bei M = Cr entstehen zusätzlich zu den gelben Nadeln noch rote, rautenförmige Kristalle, die mechanisch abgetrennt werden. Das IR-Spektrum (Tab. 2) dieser roten Kristalle zeigt $\nu(CO)$ -Banden, die beweisen, dass es sich um den zu 3a isomeren mer- $(OC)_3Cr(PPh_2CH_2CH_2)_2NH$ -Komplex (3a') handelt. Allerdings stellt man IR-spektroskopisch fest, dass eine geringe Menge der fac-Verbindung 3a in 3a' eingeschlossen ist, die sich auch säulenchromatographisch nicht vollständig abtrennen lässt.

O 11 1

¹H-, ³¹P{¹H}- und ⁹⁵Mo-NMR-Spektren

In Tab. 1 sind die ¹H-, ³¹P{¹H}- und ⁹⁵Mo-NMR-Daten der Verbindungen 3a-c und 3a' aufgelistet.

Die Zuordnung der einzelnen Spektren erfolgt durch Vergleich mit denen ähnlicher Aminoalkylphosphine [7]. Für die NCH_2 - und PCH_2 -Wasserstoffatome werden jeweils zwei eng beieinanderliegende Multipletts und für die NH-Protonen breite Singuletts beobachtet.

Die Signale der Phenylprotonen von 3a-c besitzen jeweils 4 Maxima mit Multiplettcharakter, wie dies für die Wechselwirkung von *o*-Protonen P-gebundener

Zuordnung	3a	3a'	3b	3c
P-CH ₂	2.37m \ 4H	2.23m 4H	2.38m \ 4H	2.41m \ 4H
	2.47m ∫		2.49m ∫	2.52m ∫
N-CH ₂	2.82m] 4H	3,47m] 4H	2.94m	3.09m] 4H
	3.01m ∫	3,58m ∫	3.13m∫	3,16m ∫
NH	4.08s,br 1H	4.07s,br 1H	4.19s,br 1H	4.48s,br 1H
C ₆ H ₅	6.85	6.85m)	6.96m	6.95m
	7.02m	7.02m	7.16m	7.14m
	20H	20H	20H	20H
	7.36m	7.38m	7.42m	7.39m
	7.82m J	7.78m	7.80m J	7.80m J
		7.87m		
Р	58.46s	81.8s,br ^a	38.75s	32.58s ^b
Мо			-1343 °	

Tabelle 1 ¹H-, ³¹P{¹H}- und ⁹⁵Mo-NMR-Daten von 3a-c und 3a' (δ in ppm)

^{*a*} Zusätzliches, scharfes Signal bei ca. 58.5 ppm von **3a**, (ungefähr 10%). ^{*b*-1} $J(^{183}W-^{31}P) = 239$ Hz, Lösungsmittel **3a**: CDCl₃; **3a**': Aceton- d_6 ; **3b**, **3c**: CD₂Cl₂. ^{*c*} rel. (NH₄)₂MoO₄/D₂O.

Phenylringe mit benachbarten Donor-Gruppen, hier $M(CO)_3$ -Gruppen charakteristisch ist [8–10] (Fig. 1). Modellbetrachtungen zeigen, dass die o-Protonen der Phenylringe (1) und (1') bei einer Rotation um die PC-Bindung mit den Carbonylgruppen, die *cis* zu den Phosphoratomen angeordnet sind, in Wechselwirkung treten können. Aus dieser Überlegung heraus sowie aus der Multiplettstruktur der Signale können die Resonanzsignale bei $\delta = 6.85$ (**3a**), 6.96 (**3b**) und 6.95 (**3c**) den 4 o-Protonen der beiden Phenylringe (1 und 1') zugerechnet werden.

In den ${}^{31}P{{}^{1}H}$ -NMR-Spektren von **3a-c** beobachtet man jeweils ein einziges Signal für die beiden Phosphoratome des Liganden, das in der Reihe Cr, Mo und W nach hohem Feld verschoben ist [11] und im Falle von **3c** ein symmetrisches Satellitenpaar infolge Kopplung des Phosphors mit dem 183 W-Isotop aufweist. Die Grösse der Kopplungskonstante ${}^{1}J({}^{183}W-{}^{31}P) = 239$ Hz beweist die *cis*-Anordnung [12] der beiden metallkoordinierten [13-15] Phosphoratome.

Für 3a' werden im ³¹P-NMR-Spektrum zwei Signale (Tab. 1) im ungefähren Intensitätsverhältnis von 9/1 gefunden. Das Singulett mit der geringen Intensität bei 58.5 ppm besitzt die gleiche chemische Verschiebung wie das Signal der Phosphoratome von 3a, und wird deshalb einer Verunreinigung von 3a in 3a' zugeordnet. Das andere Signal bei 81.8 ppm besitzt eine deutlich breitere Kontur. Es wird den Phosphoratomen von 3a' zugeordnet. Eine solche Tieffeldverschiebung der Phosphor-Resonanzen für mer-M(CO)₃-Phosphin-Komplexe im Vergleich zu denen der entsprechenden fac-M(CO)₃-Phosphin-Verbindungen ist bereits bekannt [16,17]. Die breite Kontur des Signals lässt sich mit einer grösseren ²J(P-P)-Kopplung von zwei trans zueinander stehenden Phosphoratomen, wie sie im mer-Komplex 3a' vorliegen, erklären.

Im ⁹⁵Mo-NMR-Spektrum von **3b** beobachtet man bei -1343 ppm lediglich ein breites Signal. Die zu erwartende Triplettstruktur mit einer ¹J(⁹⁵Mo-³¹P)-Kopplung von 120--140 Hz [17--19], ist wohl infolge Quadrupolverbreiterung durch den ¹⁴N-Kern des Liganden nicht zu erkennen [19]. Die ⁹⁵Mo-Resonanz von **3b** ist gegenüber denen vergleichbarer *fac*-Mo(CO)₃(PR₃)₃-Komplexe deutlich nach tiefem

Fig. 1. Wechselwirkung von ortho-Protonen der Phenylringe mit den CO-Gruppen in 3a-c und 3a'.

Feld verschoben und liegt zwischen den Werten von $Mo(CO)_3$ -Komplexen mit reinen P- bzw. N-Donatorliganden [18,19]. Somit kann zumindest für **3b** bewiesen werden, dass **1** wirklich als dreizähniger Ligand fungiert.

Schwingungsspektren

Die wichtigsten Daten aus den Schwingungsspektren von 3a-c und 3a' sind in Tab. 2 zusammengefasst. Von 3a' konnte wegen Zersetzung im Laserstrahl kein Ramanspektrum erhalten werden.

Hochfrequente Lage und scharfe Kontur der ν (NH)-Banden beweisen, dass in allen Verbindungen keine Wasserstoffbrückenbindungen vorliegen. Im Falle von **3b** und **3c** spalten die ν (NH)-Banden in den Festkörperspektren, wohl infolge von Kristalleffekten, in zwei Banden auf.

Die IR-Spektren von 3a-c zeigen die typischen $\nu(CO)$ -Bandenmuster von fac-M(CO)₃-Anordnungen, wobei durch Symmetrieerniedrigung von C_{3v} nach C_s die Schwingungsbanden der Rasse E in zwei der Rassen A' und A'' aufgespalten sind. Im Fall von 3a' ist die Intensitätsverteilung der drei $\nu(CO)$ -Banden zwar nicht so, wie sie für mer-M(CO)₃-Komplexe mit drei gleichartigen Donatoren angegeben wird [20], stimmt aber gut mit der anderer mer-M(CO)₃-Derivate mit PNP-Liganden und C_{2v} -Symmetrie überein [21]. Zusätzlich zu den charakteristischen $\nu(CO)$ -Banden beobachtet man noch mit geringer Intensität zwei $\nu(CO)$ -Absorptionen von 3a. Dieses, wie schon aus den ¹H- und ³¹P{¹H}-NMR-Spektren ersichtlich, kristallisiert als "Verunreinigung" mit 3a' aus und ist auch durch Chromatographie nicht abzutrennen.

Die $\delta(MCO)$ - und $\nu(MC)$ -Schwingungen von $3\mathbf{a}-\mathbf{c}$ und $3\mathbf{a}$ werden anhand der IR- und Raman-Spektren in Anlehnung an eine frühere Arbeit [22] zugeordnet.

gunu	3a			3a′		3b			સ		
	IR		Raman	IR		IR		Raman	IR		Raman
	KBr	CH_2CI_2	fest	KBr	CH ₂ Cl ₂	KBr	CH ₂ Cl ₂	fest	KBr	CH ₂ CI ₂	fest
(HN)	3310s-m	3300s	3310s,br	3255s-m	3280s	3285s 3243s-m	3300ss	3293s-m	3285s 3235s-m	3350s,br	
₽(CO)	1902sst	1909m-st	1900m	1941s-m 1910sSch ^a	1947s 1917ss ^a	1912st	1922st	1912m	1908st	1922m	1906m
	1805sst 1795sst	1820stSch 1785sst	1814s 1792s-m	1823sst 1803ss ^a 1780sst	1835sst 1795m	1815st 1790sst	1820stSch 1803sst	1812m-st 1792m	1806st 1782sst	1820m 1800m	1806m-st 1785s-m
δ(MCO)	663s-m 640m-st 573s-m		667s 643s 576s	673s 665s-m 650m-st		635m 605Sch 599m 530ss		634s 607s 592s 528s	600m 593m		607s 598s 533s
µ(MC)	553m 518Sch 485ss		556m-st 514sst 489m-st	548s		473m 450ss		480Sch 474sst 449m–st	476m 462s 440s		482sst 465m 445s-m

77

Tabelle 2

Experimenteller Teil

Bis(2-diphenylphosphinoethyl)amin-hydrochlorid (1) wurde nach [6], $M(CO)_3$ -(C_7H_8) (M = Cr, Mo, W; C_7H_8 = Cycloheptatrien) nach [23] synthetisiert. n-Butyllithium wurde als 1.6 molare Lösung in n-Hexan von der Fa. Merck, Darmstadt, bezogen. Alle Arbeiten wurden unter N₂ als Schutzgas ausgeführt. Die Lösungsmittel waren getrocknet und N₂-gesättigt. C, H und N wurden mikroanalytisch bestimmt. ¹H [270 MHz]-, ³¹P [109.4 MHz]- und ⁹⁵Mo [17.6 MHz]-NMR: JEOL FT-JNM-GX 270. IR: Zeiss IMR 16 und 25, Perkin–Elmer 580 B und 983. Raman: Varian Cary 82, Kryptonlaser (Erregerlinie 647.1 nm) der Fa. Spectra Physics. MS: Varian Mat 212 (IXE-5 Quelle, FD, EI). Schmelzpunkte wurden in abgeschmolzenen Kapillaren ermittelt und sind unkorrigiert.

Allgemeine Arbeitsvorschrift für die Darstellung der Komplexe fac-[Bis(2-diphenylphosphinoethyl)amin-P,P',N]-[tricarbonyl-metall(0)] (3a-c) (Metall = Cr: 3a; = Mo: 3b; = W: 3c)

Zu einem Äquivalent Bis(2-diphenylphosphinoethyl)ammoniumchlorid (1a), suspendiert in 15 ml THF, wird ein Äquivalent n-Butyllithium, gelöst in n-Hexan, unter Rühren zugetropft. Es wird 20 min gerührt und dann tropfenweise eine Lösung von einem Äquivalent $M(CO)_3(C_7H_8)$ in 20 ml THF zugegeben. Sodann erhitzt man 2 h unter Rückfluss und entfernt anschliessend das Lösungsmittel unter vermindertem Druck vollständig. Das Rohprodukt wird in möglichst wenig THF aufgenommen und mit 15 ml Methanol überschichtet. Innerhalb von 1–2 d entstehen gelbe Nadeln, die abfiltriert und 2 h im Vakuum getrocknet werden.

Im Fall von M = Cr entstehen zusammen mit den gelben Nadeln von 3a rote, rautenförmige Kristalle, die von Hand ausgelesen und IR-spektroskopisch als *mer*-[Bis(2-diphenylphosphinoethyl)amin-*P*, *P'*, *N*]-[tricarbonyl-chrom(0)] (3a') identifiziert werden; sie enthalten noch in geringen Mengen 3a. Auch die Chromatographie einer Lösung von 3a/3a' [Silicagel Aktivität I, Säule 1.5×30 cm, CH₂Cl₂: Methanol = 195 (ml):5 (ml)] erbringt keine vollständige Trennung der beiden Isomeren. Alle Verbindungen sind in CH₂Cl₂, Aceton und THF gut, in Methanol und Ether kaum löslich.

Weitere Daten

3a: Ansatz: 1.21 mmol. Gesamtausb.: 475 mg (68%) davon **3a** 290 mg (41%). Rotfärbung 178°C, Zers. 235°C. MS (EI, 70 eV, Einlasstemp. 250°C, Quellentemp. 150°C, bez. auf ⁵²Cr): m/z (rel. Int.) = 577 (12%, M^+), 493 (100, M - 3CO); (FD, CH₂Cl₂, bez. auf ⁵²Cr): m/z = 577 (M^+). Analyse: Gef.: C, 64.40; H, 5.24; N, 2.13. C₃₁H₂₉CrNO₃P₂ (577.52) ber.: C, 64.47; H, 5.06; N, 2.43%.

3a': Ausb.: Nach Chromatographie 180 mg (26%). Zers. 235°C. MS (EI, 70 eV, Einlasstemp. 250°C, Quellentemp. 150°C, bez. auf 52 Cr): m/z (rel. Int.) = 577 (8%, M^+), 493 (100, M - 3CO); (FD, CH₂Cl₂, bez. auf 52 Cr): m/z = 577 (M^+).

3b: Ansatz: 2.12 mmol. Ausb.: 865 mg (65.5%). Zers. 178°C. MS (EI, 70 eV. Einlasstemp. 240°C, Quellentemp. 100°C, bez. auf ⁹⁸Mo): m/z (rel. int.) = 622 (14%, M - H), 538 (43, M - H, -3CO sukz.); 510 (5, M - H, -3CO, $-C_2H_4$) (FD, CH₂Cl₂, bez. auf ⁹⁸Mo): m/z = 623 (M^+). Analyse: Gef.: C, 59.96; H, 4.65; N, 2.23. $C_{31}H_{29}MoNO_3P_2$ (621.47) ber.: C, 59.91; H, 4.70; N, 2.25%.

3c: Ansatz: 0.92 mmol. Ausb.: 470 mg (72.0%). Zers. 238°C. MS (EI, 70 eV,

Einlasstemp. 250 °C, Quellentemp. 150 °C, bez. auf ¹⁸⁴W): m/z (rel. int.) = 708 (42%, M - H), 624 (52, M - H, -3CO sukz.); (FD, CH₂Cl₂, bez. auf ¹⁸⁴W): m/z = 709 (M^+). Analyse: Gef.: C, 52.55; H, 4.15; N, 1.91. C₃₁H₂₉NO₃P₂W (709.38) ber.: C, 52.49; H, 4.12; N, 1.97%.

Dank

Dem Fonds der Chemischen Industrie, Frankfurt/Main und der Deutschen Forschungsgmeinschaft danken wir für die Unterstützung der vorliegenden Arbeit.

Literatur

- 1 J. Ellermann und N. Will, Z. Naturforsch. B, 44 (1989) 127.
- 2 L. Sacconi und R. Morassi, J. Chem. Soc. (A), (1968) 2997.
- 3 L. Orioli und C.A. Ghilardi, J. Chem. Soc. (A), (1970) 1511.
- 4 J. Ellermann, M. Moll und N. Will, Z. Anorg. Allg. Chem., im Druck.
- 5 Norbert Will, Dissertation, Universität Erlangen-Nürnberg (1989).
- 6 M.E. Wilson, K.G. Nuzzo und G.M. Whitesides, J. Am. Chem. Soc., 100 (1978) 2269.
- 7 R.C. Taylor und D.B. Walters, Tetrahedron Lett., (1972) 63.
- 8 J. Ellermann und W. Wend, J. Organomet. Chem., 258 (1983) 21.
- 9 J. Ellermann, K. Geibel, L. Mader und M. Moll, Chem. Ber., 114 (1981) 2322.
- 10 J. Ellermann, E.F. Hohenberger, W. Kehr, A. Pürzer und G. Thiele, Z. Anorg. Allg. Chem., 464 (1980) 45.
- 11 P.E. Garrou, Chem. Rev., 81 (1981) 229.
- 12 S.O. Grim, D.A. Wheatland, Inorg. Chem., 8 (1969) 1717.
- 13 S.O. Grim, D.A. Wheatland und W. McFarlane, J. Am. Chem. Soc., 89 (1967) 5573.
- 14 M. Baudler, F. Salzer und J. Hahn, Z. Naturforsch. B, 37 (1982) 1529 und die dort zit. Lit.
- 15 J. Ellermann und A.A.M. Demuth, J. Organomet. Chem., 309 (1986) 307.
- 16 E.E. Isaacs und W.A.G. Graham, Inorg. Chem., 14 (1975) 2560.
- 17 S. Affandi, J.H. Nelson, N.W. Alcock, O.W. Howarth, E.C. Alyea und G.M. Sheldrick, Organometallics, 7 (1988) 1724.
- 18 E.C. Alyea, R.E. Lenkinski und A. Somogyvari, Polyhedron, 1 (1982) 130.
- 19 A.F. Masters, G.E. Bossard, T.A. George, R.T.C. Brownlee, M.J. O'Connor und A.G. Wedd, Inorg. Chem., 22 (1983) 908.
- 20 D.M. Adams, Metal-Ligand and Related Vibrations, S. 101, Edward Arnold Publishers, London 1967.
- 21 W. Schirmer, U. Flörke und H.-J. Haupt, Z. Anorg. Allg. Chem., 545 (1987) 83.
- 22 J. Ellermann, H. Gäbelein und W. Uller, Z. Anorg. Allg. Chem., 416 (1975) 117.
- 23 G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 3. Aufl., Bd. 3, S. 1885, F. Enke Verlag, Stuttgart, 1981.